


Facile Synthesis of α -Hydroxybutenolides and α -Keto- β -allyl- γ -butyrolactones

Isao SHIMIZU,* Takashi MARUYAMA, and Hajime HASEGAWA

Department of Applied Chemistry, School of Science and Engineering,
Waseda University, 3-4-1 Ookubo, Shinjuku-ku, Tokyo 169

The reaction of α -keto- β -alkyl- β -allyloxycarbonyl- γ -butyrolactones with ammonium formate in the presence of palladium catalyst gave α -hydroxybutenolides in good yields. When the reaction was carried out without ammonium formate, decarboxylation-allylation took place to give allyl enol ethers of α -hydroxybutenolides, which were converted to α -keto- β -allyl- γ -butyrolactones by the thermal Claisen rearrangement.

Functionalized γ -butyrolactones and butenolides are well known as a component of a large number of biologically important natural products and as versatile intermediates for organic synthesis.¹⁾ Enormous number of synthetic methods for γ -butyrolactones and butenolides have been reported,²⁾ but synthetic methods for α -hydroxybutenolides and α -keto- γ -butyrolactones are scarce.³⁾ In this paper we report a facile synthetic method for α -hydroxybutenolides and α -keto- β -allyl- γ -butyrolactones using the palladium-catalyzed decarboxylation and decarboxylation-allylation of allyl β -keto carboxylates.^{4, 5)}

Scheme 1.

The synthetic scheme is shown in Scheme 1. The starting diallyl α -oxalcarboxylates **1**⁶⁾ were converted to α -keto- β -alkyl- β -allyloxycarbonyl- γ -butyrolactones **2** by the reaction with formalin (37%) using NaHCO_3 as a base. Removal of allylic ester groups of **2** was carried out in good yields by the reaction with ammonium formate in the presence of palladium catalyst to give the lactones **3** as enol forms. Decarboxylation-allylation of allyl β -keto carboxylates in the presence of palladium catalyst usually affords α -allyl ketones.⁵⁾ However, when the reaction of **2** was carried out without ammonium formate, no formation of *C*-allylated products was observed. Instead, allyl enol ethers **4** were obtained in good yields as *O*-allylated products. The *C*-allylated products **5** were obtained by the thermal Claisen rearrangement of **4**.

This work was financially supported by the Grant-in-Aid from the Ministry of Education, Science and Culture.

References

- 1) G. Stork and S. D. Rychnovsky, *Pure Appl. Chem.*, **59**, 345 (1987); T. Namiki, Y. Baba, Y. Suzuki, M. Nishikawa, K. Sawada, Y. Ito, T. Oku, Y. Kitaura, and M. Hashimoto, *Chem. Pharm. Bull.*, **36**, 1404 (1988); M. Asaoka and H. Takei, *Yuki Gosei Kagaku Kyokai Shi*, **44**, 819 (1986).
- 2) For a review, see: Y. S. Rao, *Chem. Rev.*, **76**, 625 (1976); for recent works, see: T. Ito, S. Okamoto, and F. Sato, *Tetrahedron Lett.*, **31**, 6399 (1990); Y. Nagano, Wei-Min Dai, M. Ochiai, and M. Shiro, *J. Org. Chem.*, **54**, 5211 (1989); M. Watanabe, M. Tsukazaki, Y. Hirakawa, M. Iwao, and S. Furukawa, *Chem. Pharm. Bull.*, **37**, 2914 (1989) and references cited therein.
- 3) H. H. Wasserman and J. L. Ives, *J. Org. Chem.*, **43**, 3238 (1978); M. Nose, A. Kobayashi, T. Yamanishi, M. Matsui, and S. Takei, *Nippon Nogei Kagaku Kaishi*, **57**, 557 (1983); H. Alper, H. Arzoumanian, J. F. Petrigiani, and M. Saldona-Maldonado, *J. Chem. Soc., Chem. Commun.*, **1985**, 340; G. H. Labib, M. A. Rahman, Y. El-Kilany, A. I. El-Massry, and E. S. H. El-Ashry, *Bull. Chem. Soc. Jpn.*, **61**, 4427 (1988); H. Alper, *Tetrahedron Lett.*, **30**, 2617 (1989) and references cited therein.
- 4) J. Tsuji, M. Nisar, and I. Shimizu, *J. Org. Chem.*, **50**, 3416 (1985).
- 5) I. Shimizu, T. Yamada, and J. Tsuji, *Tetrahedron Lett.*, **21**, 3199 (1980); T. Tsuda, Y. Chujo, S. Nishi, K. Tawara, and T. Saegusa, *J. Am. Chem. Soc.*, **102**, 6381 (1980).
- 6) I. Shimizu, T. Makuta, and M. Oshima, *Chem. Lett.*, **1989**, 1457.

(Received May 10, 1991)